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a b s t r a c t

The complex variable boundary element method (CVBEM) provides solutions of partial differential
equations of the Laplace and Poisson type. Because the CVBEM is based upon convex combinations from
a basis set of functions that are analytic throughout the problem domain, boundary, and exterior of the
problem domain union boundary (except along branch cuts), both the real and imaginary parts of the
CVBEM approximations satisfy the Laplace equation, leaving the modeling error reduction effort to be
that of fitting the problem boundary conditions. In this paper, the approximate boundary approach is
used to depict the goodness of fit between the CVBEM results and the problem boundary conditions. The
approximate boundary is the locus of points where the CVBEM approximation function meets the values
of the problem boundary conditions. Because of the collocation method, the approximate boundary
necessarily intersects the problem boundary at least at the collocation points specified on the problem
boundary. Consequently, adding nodes and collocation points on the problem boundary results in
reducing the departure between the approximate boundary and the true problem boundary. Thus, the
approximate boundary is developed by tracking level curves from the real and/or imaginary parts of the
CVBEM approximation function.

Published by Elsevier Ltd.

1. Introduction

The complex variable boundary element method (CVBEM) is a
coupled numerical analytic modeling technique that provides solu-
tions to particular partial differential equations such as the Laplace
and Poisson equations. The CVBEM has as its underpinnings the
numerical integration of the Cauchy integral equation for analytic
complex functions. Originally developed in 1981 as the CVBEM [6],
the modeling technique has been the subject of numerous research
papers and books (for example, see [7,8]). The methodology has
been extended to three-dimensional problems and extensions to
even higher spatial dimensions have been developed mathemati-
cally by Hromadka and Whitley [9]. The CVBEM has also been
developed for problems using a Hilbert space setting as well as a
collocation approach. Non-homogeneity, anisotropy, and other such
topics have also been examined. Applications have been made in
several areas of engineering including stress–strain, torsion, elec-
trostatics, heat transfer, groundwater flow, contaminant transport
in groundwater, freezing and thawing of algid soils, among others. It

is noted that the CVBEM is not at all restricted to particular domain
types such as typically found with other analytic methods such as
Fourier series and so forth. Instead, the CVBEM can be applied to
general industry level problems. Unlike domain type numerical
methods such as the finite element method (FEM) or finite
difference methods (FDM) that require nodal point specification
upon the problem boundary and also throughout the domain of the
problem, the CVBEM does not require nodes to be specified inside
the problem domain. Furthermore, such domain methods do not
develop a well-defined approximation function that can be eval-
uated throughout the problem domain (such as accomplished by
the CVBEM), but instead provide point estimates at a set of nodal
points. Domain methods like FEM and FDM do not have an
equivalent modeling error display such as is provided by the CVBEM
approximation function as applied to the approximation boundary
approach used in this paper. This is because the CVBEM approx-
imation is continuous over the problem domain and boundary,
whereas the FEM and FDM are only point estimates at a finite set of
particular points.

In this paper, the approximate boundary method for assessing
the CVBEM in fitting problem boundary conditions is developed by
using computer programs MATLAB and Mathematica. Of special
interest are the matrix computational capabilities of MATLAB which
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enable CVBEM models to be built involving more than a thousand
nodes. Mathematica will be used for its internal graphical inter-
face capabilities by way of MATlink, a Mathematica application
module for seamless two-way communication and data transfer
with MATLAB. This allows CVBEM matrix solutions to be developed
by MATLAB whereas the plots of potential function and stream
function isocontours are obtained using Mathematica. Conse-
quently, the approximate boundary for use with the CVBEM is
obtained from the Mathematica plots.

The approximate boundary is a geometric construct of an
alternate boundary to the true problem boundary, where the
CVBEM approximation function achieves the actual problem
boundary condition values. The CVBEM satisfies the governing
PDE for the Laplace and Poisson equations (in two or higher spatial
dimensions), and fits the problem boundary conditions on the
problem boundary either at collocation points where boundary
condition values are specified, or in a least squares errors sense by
using the usual inner product. In this paper, the collocation
procedure [4] is used to develop the CVBEM approximation
because the approximate boundary will intersect the true problem
boundary at collocation points (i.e., the approximation achieves
the boundary condition value at collocation points). Collocation
points are then subsequently added to the true problem boundary
at locations where departure is seen largest between the approx-
imate and true boundaries. Adding or adjusting node and colloca-
tion points draws the approximate boundary closer to the true
boundary, which intersects the true problem at the additional
collocation points. Each CVBEM node is located either on the
problem boundary or exterior of the boundary union in the
enclosed domain. Because the CVBEM basis functions are products
of complex polynomials with complex logarithms, logarithmic
branch cuts are rotated with respect to the true boundary so that
the branch cuts lie exterior of the problem domain. Accordingly,
the resulting CVBEM approximation is analytic in the entire
complex plane (or set of planes if three or higher dimensions are
used) except at branch cuts and branch points of the nodal point
logarithm functions. Therefore, the CVBEM approximation is
analytic within the problem domain, on the problem boundary
except at nodes (but continuous), and throughout the problem
exterior except along branch-cuts. Isocontours may be developed
from the CVBEM approximation using Mathematica, which corre-
spond to level curves of the boundary condition values between
collocation points for use in tracking the approximate boundary
for the target problem. Collocation points are located at boundary
corners, and close to but not on singularities of the boundary
conditions. Generally, collocation point density is developed to
increase at locations of high variation of boundary condition
values.

The resulting approximate boundary by means of using a
reasonable placement of collocation and nodal points is found to
generally lay strikingly close to the true problem boundary,
allowing one to surmise the conclusion that had the problem
geometry and boundary conditions been the approximate bound-
ary and associated conditions, then one has in-hand the solution
to that alternative boundary value problem. Generally, one devel-
ops the approximate boundary (by adding or adjusting locations of
nodes and/or collocation points) until the maximum departure
from the true boundary is less than the construction tolerance for
the prototype.

2. Mathematical development

The mathematical underpinnings of the CVBEM stem from the
numerical integration of the Cauchy integral equation for an
analytic function in a simply connected two-dimensional complex

domain. Fig. 1 is a graphical depiction of the domain, Ω, of a
simply connected region along with n nodal points on its bound-
ary, Γ. For development purposes, nodes are assumed to be
positioned on the problem boundary. (In application, nodes are
typically made part of the optimization process where node
location is an additional degree of freedom. Accordingly, nodes
may be positioned exterior to the problem domain.) The boundary
can be segmented into smaller sections or boundary elements
denoted as Γj. Upon these subsections of the boundary an
interpolating polynomial is applied. If one were to sever the
boundary and lay it out flat from s¼0 to s¼L as in Fig. 2, the
values of the basis functions become apparent, attaining their
maximum at node j and their minimum values at the nodes
adjacent to j (i.e., nodes (j�1) and (jþ1)). Fig. 2 depicts the use
of the usual basis functions. Higher order basis functions are
examined in Hromadka and Whitley [8]. Using a piecewise
continuous global interpolation function that is defined continu-
ously on the problem boundary (that is assumed to be simple
closed), the two-dimensional potential and stream functions are
approximated on the problem boundary to the arbitrary level of
accuracy. Eq. (1) is the Global Trial function used in the CVBEM. It
is defined as a sum of basis functions multiplied individually by
the corresponding nodal values. Depending on the nature of the
Global Trial function, different variations of the CVBEM are
possible.

GðζÞ � ∑
n

j ¼ 1
NjðζÞwj ð1Þ

For example, Bohannon and Hromadka [2] used a set of complex
monomials to develop a Global Trial function that was a complex
polynomial defined over the entire problem boundary, resulting in
the complex polynomial method. The typical situation, however, is to
use a set of basis functions that are polynomial interpolations
between specified locations on the problem boundary, where such
locations are defined by placement of nodal points. In such cases, the
Global Trial function is a sum of such basis functions multiplied by
complex coefficients [7]. The Global Trial function is then substituted
into the Cauchy integral equation, resulting in the CVBEM approx-
imation function, Eq. (2), defined over the problem boundary and
the interior domain enclosed by the problem boundary. This

Fig. 1. CVBEM node and boundary element depiction.

Fig. 2. Linear interpolation along problem boundary.
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approximation is also analytic over the problem domain enclosed by
the problem boundary. Given a basis function set of linear inter-
polating polynomials between nodes (all specified upon the problem
boundary) as seen in Fig. 2, the CVBEM approximation function is
seen to be a linear complex polynomial plus the sum of products of
linear complex polynomials with complex logarithm functions as
shown
in Eq. (3)

ŵðz0Þ ¼
1
2πi

∮Γ
GðζÞ dζ
ζ�z0

; z0AΩ; z0 =2Γ ð2Þ

ŵðzÞ ¼ P1ðzÞþ ∑
n

j ¼ 1
Cjðz�zjÞ Lnjðz�zjÞ: ð3Þ

In (3) Cj are the complex constants Cj ¼ αjþ iβj; Lnj is the notation
for the complex logarithm function with argument ðz�zjÞ, with
branch cut rotated not to intersect other branch cuts or the problem
domain union boundary, and point z is not an element of any branch
cut. If other polynomial basis functions are used, different CVBEM
approximation functions result, but the overall constructs are similar
to Eq. (3). Complex coefficient values may be estimated for a
collocation approach. In all such cases, the real and also the
imaginary parts of the resulting CVBEM approximation satisfy the
Laplace equation over the problem domain.

If the CVBEM approximation function is viewed as a linear
combination of analytic functions, then an inner-product may be
used to expand the approximation function as a generalized
Fourier series, with complex coefficients determined by using a
Gram–Schmidt process.

Besides selection of the complex coefficients as degrees of
freedom, the CVBEM approximation functions have additional
degrees of freedom by virtue of selecting nodal point location,
not only along the problem boundary, but also away from the
boundary and exterior of the problem domain, similar to but
different from the method of fundamental solutions [12,1].
Further, CVBEM adjustments include specification of the complex
logarithm branch cuts for all the nodes such that the branch cuts
do not intersect and lie exterior of the problem domain and
problem boundary. With such branch cut orientation, the CVBEM
approximation function is not only analytic over the problem
domain enclosed by the problem boundary, but everywhere in the
complex plane except along the branch cuts and at branch points
(i.e., branch points being the CVBEM nodal points). Eq. (4), a polar
coordinate form of Eq. (3), is one approach to incorporate the
ability to rotate the logarithmic branch cuts of the individual
nodes. Hence,

ŵðzÞ ¼ P1ðzÞþ ∑
n

j ¼ 1
ðαjþ iβjÞRjð cos θjþ i sin θjÞðln Rjþ iθjÞ ð4Þ

where P1ðzÞ ¼C0þC�1z; αj and βj are the real components of the
Cj complex constants; and Rj and θj are the polar coordinate
representations with respect to node j. (It is further noted that the
CVBEM has been extended to three-dimensional problems with
virtually any reasonable geometry as the problem boundary. The
CVBEM is not limited to specific geometries in order to be applied,
like a typical Fourier series. Most geometries encountered in
typical industrial or physical problems may be accommodated by
the CVBEM.)

In this paper, the approach used for development of complex
coefficients for use in Eq. (3) is collocation, where either the real or
the imaginary part of the CVBEM approximation function is set to
equal the problem boundary condition values at collocation point
locations specified by the modeler. Of course, the real part of the
CVBEM approximation corresponds to the usual potential function
of the problem solution, and the imaginary part of the approxima-
tion corresponds to the stream function of the problem solution.

Therefore, the approximation function0s real or imaginary parts
will be equal to the corresponding boundary condition values at
collocation points specified along the problem boundary. Because
the approximate boundary (as discussed in the prior section) is
to be estimated as part of the CVBEM approximation effort,
collocation point locations should typically include all corners of
the boundary geometry. Additionally, at locations along the
problem boundary where significantly above average variation in
the boundary condition values is occurring, such as in the
proximity of singularities or abrupt changes in boundary condition
values, an increase in the density of collocation points provides a
better CVBEM approximation due to better approximation of the
boundary condition values along the problem boundary. More
details regarding placement of nodes and collocation points is
provided in the subsequent application sections below.

The implementation of the CVBEM onto computer programs
Mathematica and MATLAB provides a breakthrough in the use of the
CVBEM due to the significant increase in the number of nodal
points possible in the CVBEM. Using these computer programs in
tandem via MATlink, the authors have successfully applied the
CVBEM to problems involving thousands of nodal points. This is
important because the prior success of the CVBEM reported in the
literature has been from applications involving typically several
dozens of nodal points. Further research is needed in order to
better quantify the magnitude of CVBEM problems that can be
accommodated. The resulting much higher level of accuracy in
matrix solutions enables an entirely new view of application of the
CVBEM in industrial level problems.

3. Implementation using MATLAB

The CVBEM system matrix is the repository of all information
surrounding the model domain and its simple-closed boundary. It
is non-singular, well-posed and structurally suitable (i.e., well
conditioned) for MATLAB to solve, and it does so both easily and
most important efficiently. MATLAB uses routines from a collection
of streamlined and highly optimized subroutines from LINPACK
and EISPACK to perform numerical calculations [5,10]. Thus, it is
optimized for operations involving matrices and vectors. This
process is known as vectorization. It avoids the loop-based
approaches to solving linear systems, which are more prone to
error, require more lines of code to run (i.e., bulky), and have
slower performance. Further, instead of defining for and while

loops that incrementally increase the size of a data structure each
time through the loop, MATLAB can preallocate large contiguous
blocks of memory and move entire arrays into those blocks. This
improves execution time because there is no need to repeatedly
reallocate memory for growing matrix systems.

The CVBEM is coded in MATLAB as a function that performs four
major tasks: retrieve geometry of the problem, calculate the nodal
distances and angles, build the CVBEM system matrix, and solve
for the unknown complex coefficients. The geometry of the
problem is given as a ½ð3nþ3Þ � 4� geometry matrix, which
consists of 2nþ3 evaluation points and (n) nodes. The first column
of the matrix distinguishes nodal point from evaluation point. In
Fig. 3, the ASCII code 78, which corresponds to the character ‘N’,

Fig. 3. Sample input geometry matrix with one node.
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represents the nodes, while the ASCII code 69, which corresponds
to the character ‘E’, represents the evaluation points. The second
and third columns are the physical locations of the evaluation and
nodal points in the x and y directions, respectively. Every point
used in the mathematical calculation of the problem solution must
have an x and y coordinate. The final column of the geometry
matrix contains one of two types of information. If the row is a
node coordinate, then the value of the fourth entry in that row will
be the rotation value, Δθ, which is used to rotate the branch cut of
the particular node out of the domain space of the problem. This is
a preliminary calculation taken by the modeler or it may be
automatically computed for simply connected regions. If the row
is an evaluation point, then the fourth entry in that row contains a
known quantity at that point. The quantity may be real or
imaginary. It may be a fixed constant, or simply the derivative at
that point. Fig. 3 is a sample input geometry matrix of one node.
Notice that the last row, a node, has a value of π, which is the Δθ
rotation of the logarithmic branch cut out of the domain (by
default branch cuts proceed to the left of nodes corresponding to a
Δθ of zero). Retrieval of the information necessary to the math-
ematical formulation of the CVBEM system matrix is simply a
matter of slicing the geometry matrix into column vectors and
feeding it as input into our algorithm.

The next task for our CVBEM function is to calculate the nodal
distances and angles. Fig. 4 depicts the location of an arbitrary
evaluation point, z (denoted as a star), along the boundary of a
two-dimensional domain. For each nodal point in the plane (note
that nodes need not be on the actual boundary, and in some cases
it may be better if they are not), the radius, Rj, and angles, θj, are
calculated into column vectors. In Fig. 4, the n nodes are posi-
tioned around and on the problem boundary and are numbered in
the counter-clockwise direction. MATLAB handles complex numbers
efficiently. It does not require any special coding. Complex num-
bers are formed by simply appending 1i to any term of a binomial
representing the complex number. This makes specifying the z of
the evaluation points simple since from the geometry matrix the x
and y coordinates of each point are already given. To find the
evaluation coordinate in the complex plane compute z¼xþyn1i.
The distance vector, Rj, is then calculated by taking the complex
magnitude of ðz�zjÞ. We now have a single vector for any
evaluation point (i.e., for each collocation point or node) on the
boundary that contains the radii from the evaluation point to
every node in the problem. Collecting all distance vectors together
gives a ½ð2nþ3Þ � n� Rj matrix which contains the radii to and from
every evaluation point and node in the plane. The number of
constants used in the CVBEM approximation function of Eq. (4) is
2nþ3 for n nodes and a linear basis function set. Subsequently,

using the Rj matrix and the MATLAB angle function, calculate
ðθjþΔθjÞ, where Δθj represent the angles to rotate the branch
cuts out of the domain.

With the Rj and the θj matrices defined, Euler0s identity is
applied. Because of MATLAB0s vectorization property, ðz�zjÞ is
computed for the entire problem in one line, namely,

zminuszj¼Rj.nexp(1i.n(thetaj)),

which is a code for ðz�zjÞ ¼ Rjeiθj . The (.n) signals to the program
to perform array multiplication, which is the element-by-element
product of the arrays Rj and θj matrices. Having properly defined
matrices for distances and angles in the form of ðz�zjÞ, the system
matrix is constructed. Fig. 5 is the system matrix for a one node
system (note that a one node system requires 5 evaluation points).
The column vector in Fig. 5 represents the unknown coefficients of
the approximating function. By setting this equal to the vector of
known values at the evaluation points, we have a well-defined
matrix system with a unique solution because the columns of the
system matrix are linearly independent [11].

The CVBEM was used to calculate problems with nodes that
ranged from 1 to over 1000. Solution of the CVBEM matrix system
was assessed by tracking computational time. Fig. 6 is a plot of the
number of nodes versus the time necessary to find a solution for
the unknown coefficients. While from 1 to about 500 nodes show
a slightly exponential rise in time, from 500 to 1000 nodes the
computational time is nearly linear. In any event, calculating the
solution to 1000 unknown coefficients took only 4 tenths of a
second.

4. Demonstration problems

Example 4.1. A square domain with discontinuous boundary
conditions.
The first example problem considered is the spatial domain of a

unit square positioned in the first quadrant. Temperature values
(i.e., potential function values) of 01 are specified along the square
domain top, bottom, and right side. A temperature value of 1001 is
specified along the left side. Shown in Fig. 7 is a CVBEM plot of
approximation function streamline contours using only 15 nodal
points where the nodes are positioned as part of the CVBEM
modeling procedure such as to visually reduce the departure
between the approximate boundary and the true problem bound-
ary. Two nodes are located closely together at the upper and lower
left corners to better model the abrupt change in the value there.
Also, in Fig. 7, one can see the CVBEM approximation streamline
function as evaluated in the interior and also the exterior of the
problem domain. The problem domain is not shown in Fig. 7;
rather, the approximate boundary from the CVBEM is shown. The
CVBEM approximate boundary was developed by program Math-
ematica given specified values for the CVBEM potential function
level curves in the Mathematica automated plotting routines. Seen
in Fig. 7 are some of the branch cuts.
The subject example problem is further analyzed by the CVBEM

using a 512 evenly spaced node model. The resulting CVBEM
approximation function, potential function and streamline func-
tion contours are shown plotted together in the flownet of Fig. 8.

Branch cuts

Fig. 4. A star representing the evaluation point along the boundary of a
two-dimensional domain. Fig. 5. CVBEM system matrix for one node.
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Also seen in Fig. 8 is the CVBEM approximate boundary as well
as CVBEM approximation results located exterior of the pro-
blem domain. From Fig. 8, the effect of singularities in the
potential function boundary condition values at the upper and
lower left corners of the domain can be seen. Similar singu-
larity effects are seen at the right side top and bottom corners
even though the potential function boundary condition values
remain a constant value of zero. From the CVBEM results seen
in Figs. 7 and 8, the approximate boundary depicts a problem
domain that is almost identical to the original problem domain
and boundary.
In order to demonstrate the closeness between the CVBEM

approximations as depicted in Fig. 8, versus the solution obtained
from Fourier series, two pathlines are considered where both
approximations are compared; namely, the diagonal pathline of
y¼x that bisects the square domain from the lower left corner to
the upper right corner, and also the horizontal pathline of y¼0.5 that
runs along the boundary of the lower quartile of the square domain.
A plot of both nearly identical approximation functions along these

two pathlines is shown in Fig. 9a and b. It is noted that in Fig. 8, the
flownet is plotted for the subject problem. The CVBEM produces both
the streamlines and the orthogonal potentials. For the test problem,
boundary conditions are specified as the potential values at a given
(x, y) coordinate. Similarly, in Fig. 9a and b, values of the potential
functions are compared along the prescribed pathlines. Further
analysis, keeping in mind the maximum principle, estimates the
departure from the true boundary by plotting the values on the
boundary and comparing them to the true boundary of the problem.
Fig. 10 represents values along the boundary of Example 4.1. Along
the x-axis from zero to one represents one side of the domain, then
two to three and so on. Three sides of the problem domain are set to
01 while the fourth side is set to 1001.

Example 4.2. Ideal fluid flow in degree bend.
Using the unit square domain in the first quadrant, ideal fluid

flow in a 901 bend is described by the analytic function wðzÞ ¼ z2.
In this example, there are no discontinuities as considered in
Example 4.1 other than the boundary corners. The potential
function is given by ϕðx; yÞ ¼ Re½wðzÞ� ¼ x2�y2 and the streamline
function is ψ ðx; yÞ ¼ Im½wðzÞ� ¼ 2xy. The CVBEM is applied as
described in Example 4.1. Modeling error throughout the domain
is determined by a set of 1000 evaluation points per side on the
boundary in the same way nodes and evaluation points are set up.
The error at each evaluation point is determined by taking the
known value at the point given by x2�y2 and subtracting the
value given by the CVBEM at the same point. The L2 error is given
by squaring the exact value as defined by the problem minus the
CVBEM given value. The L1 error is found by searching for the max
difference between the value as defined by the function and the
CVBEM value. As the number of nodes increases, the modeling
error decreases as shown in Table 1.
Fig. 11 depicts the flow-net and approximate boundary for the

ideal fluid flow problem of Example 4.2, with streamlines plotted as
dashed lines and potentials plotted as solid lines. It is noted that the
CVBEM develops both the potential and stream functions concur-
rently even though the problem is modeled as a Dirichlet problem
involving only boundary conditions of the potential function.
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Fig. 6. Computational time versus number of nodes for CVBEM.
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Fig. 7. Mathematica plot of the CVBEM approximate boundary for Example 4.1,
including streamlines and branch cuts. Nodes shown as dots.

Fig. 8. Mathematica plot of the CVBEM approximate boundary, including display of
branch cuts and CVBEM streamlines. n¼512.
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5. Analogy of the CVBEM to conformal mapping

In the development of the approximate boundary, the CVBEM
approximation function can be viewed in terms of conformal
mapping between the two domains of the original problem
boundary and its associated enclosed domain, versus the approx-
imate boundary and its associated enclosed domain. Under this
interpretation, the CVBEM provides a conformal mapping of the
problem boundary and the enclosed domain to an alternate
geometry for the boundary and the enclosed domain. And, by
the addition of nodes and collocation points, or by adjusting the
location of nodes and collocation points, the conformal mapping is
modified until the alternate geometry (i.e., “the approximate
boundary”) is visually “closer” to the true problem geometry.
Given that the corresponding CVBEM model operates upon the
approximate boundary, the modeling goal is to develop an
approximate boundary that is as “close” as possible to the true
problem boundary. This approach is assessing modeling error and
provides a more visual representation.

6. “Chasing” discontinuities in boundary conditions with the
approximate boundary approach

Discontinuities in boundary conditions may occur in the pro-
blem formulation primarily through discontinuities in the boundary
condition values or in their derivatives. Similarly, discontinuities
may occur by the geometric construct of the problem boundary.
Although it is commonplace to consider problem geometries with
straight lines and corners, and with boundary condition values
specified on the problem boundary as constant values along such
straight lines and across corners, the reality is that such specifica-
tions may involve discontinuities. This is particularly true with
boundary condition values specified as piecewise constants along
the problem boundary. In the theory of Fourier series, piecewise
constant boundary conditions are frequently encountered and the
developed Fourier series converges to such piecewise constant
values along the problem boundary except that a midpoint value
is given by the series at the location of the step between piecewise
constant values. However, although theoretically tractable, the
computational approach is limited to partial sums of the Fourier
series which is only a portion of the total series and, therefore, does
not equal the exact solution. Similarly, there typically is a “Runge
phenomenon” oscillation (see [3]) provided by these partial sums
obtained from the Fourier series. In general, only the entire infinite
term Fourier series is the exact solution to the boundary value
problem. In the approximate boundary approach, the approximate
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Fig. 9. Temperature values along two lines for Example 4.1. (a) Along the line y¼x and (b) along the line y¼ 1
2 .
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Fig. 10. CVBEM values along the boundary.

Table 1
Modeling error versus CVBEM nodes.

# of nodes L2 L1

8 0.259634 0.0135822
16 0.0820735 0.00523
32 0.021512 0.00177898
64 0.00436868 0.000495219

128 0.000563918 9:22912 � 10�05

256 3:16339� 10�05 7:79644 � 10�06

512 3:96644� 10�07 1:38827 � 10�07

Fig. 11. CVBEM flow-net and approximate boundary for Example 4.2.
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boundary also demonstrates oscillation and departure in the
vicinity of singularities (such as may occur with boundary condition
values or at problem geometry corners). To deal with such situa-
tions, additional nodes and collocation points are added to the
CVBEM model at locations of singularities and at problem corners
so as to intersect the approximate boundary with the true problem
boundary. For example, in a problem situation involving an iso-
sceles triangle, with a boundary condition value of 0 assigned along
two sides and a value of 100 assigned along the third side, not only
are there singularities created by the change in boundary condition
values (from 0 to 100) at the corners, but also from the sharp corner
geometry while holding the boundary condition value constant. In
the CVBEM approximation, additional nodes and collocation points
were added in the vicinity of the corners, improving computational
approximation results as seen by a reduction in the departure
between the approximate and true boundaries.

7. Conclusions

The CVBEM is extended towards use on problems involving
over a thousand nodal points and collocation points, using
computer programs MATLAB and MATLink as the computational
engine and using program Mathematica for graphics. Given this
computational capability, the approximate boundary technique for
depicting CVBEM model error in fitting problem boundary condi-
tions is shown to be a viable and useful approach, rather than
developing the usual plots of function values versus specified
boundary condition values along the problem boundary. The
modeling approach now becomes one of creating a problem

boundary and an enclosed domain that is “close” to the true
problem boundary and the enclosed domain, which is a much
more visual measure of modeling error and more tractable to
locating where additional modeling nodes and collocation points
should be added.
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